Problema sui batteri con semplici disequazioni logaritmiche

Ecco un esercizio di fisica con attinenza alla biologia che include una semplice disequazione logaritmica:

Un batterio si riproduce in modo esponenziale, raddoppiando la sua popolazione ogni 30 minuti. Inizialmente, c'è un solo batterio. 

Sia x il tempo in minuti trascorso dall'inizio della riproduzione. 

Determina il valore minimo di x affinché la popolazione di batteri superi 1000 unità.

Soluzione:

Sia N(x) la popolazione di batteri al tempo x.
Sappiamo che N(x) = 2^(x/30), poiché la popolazione raddoppia ogni 30 minuti.

Vogliamo trovare il valore minimo di x tale che N(x) > 1000.
Quindi dobbiamo risolvere l'diseguaglianza:
2^(x/30) > 1000

Applicando il logaritmo in base 2 ad entrambi i membri, otteniamo:
x/30 > log2(1000)
x > 30 * log2(1000)

Calcolando il logaritmo in base 2 di 1000, otteniamo circa 9.97.
Quindi il valore minimo di x è:
x > 30 * 9.97 = 299 minuti

Quindi il valore minimo di x affinché la popolazione di batteri superi 1000 unità è 299 minuti.

Commenti

Post popolari in questo blog

Statica dei fluidi: videolezioni, presentazione e relativo test da IA

Esperimenti virtuali, test e presentazioni sui fluidi su peth colorado, learningapps e senecalearning